Ajar hitung kini hadir di youtube, jadi kalian juga bisa pelajari materi ini di chanel ajar hitung lho... yuk klik link video di bawah ini 1. Modus dari data pada tabel berikut adalah ...a. 20,5 + ¾ .5b. 20,5 + 3/25 .5c. 20,5 + 3/7 .5d. 20,5 - ¾ .5e. 20,5 - 3/7 .5PembahasanRumus modus untuk data kelompok adalahDengantb = tepi bawahd1 = selisih frekuensi kelas modus dengan kelas sebelumnyad2 = selisih frekuensi kelas modus dengan kelas sesudahnyac = panjang kelasPada soal diketahui dataSehingga nilai modus dapat kita cari Mo = 20,5 + 3/ C 2. Modus dari data pada tabel distribusi frekuensi berikut adalah ...a. 34,50b. 35,50c. 35,75d. 36,25e. 36,50PembahasanRumus modus untuk data kelompok adalahDengantb = tepi bawahd1 = selisih frekuensi kelas modus dengan kelas sebelumnyad2 = selisih frekuensi kelas modus dengan kelas sesudahnyac = panjang kelasPada soal diketahui dataSehingga nilai modus dapat kita cari Mo = 29,5 + 6/ Mo = 29,5 + 6 Mo = 35,5Jawaban B 3. Simpangan baku dari data 2, 3, 4, 5, 6 adalah ...a. √15b. √10c. √5d. √3e. √2PembahasanRumus untuk mencari simpangan baku adalahDenganS = simpangan bakuxi = datax ̅ = rata-rata datan= banyak dataSebelumnya kita cari dulu rata-ratanyax ̅ = 2+3+4+5+6/5 = 20/5 = 4Simpangan bakunya S = = √2Jawaban E 4. Frekuensi histogram di bawah ini menunjukkan nilai tes matematika sekelompok siswa SMA kelas XII-IPS. Rata-rata nilai raport tersebut adalah ... PembahasanKita ubah data dalam histogram di atas dalam bentuk tabel Rumus rata-rata dengan data kelompok adalahJawaban D 5. Dalam suatu kelas terdapat siswa sebanyak 21 orang. Nilai rata-ratanya 6, jika siswa yang paling rendah nilainya tidak dikutsertakan, maka nilai rata-ratanya menjadi 6,2. Nilai yang terendah tersebut adalah ...a. 0b. 1c. 2d. 3e. 4PembahasanNilai rata-rata 21 orang = 21 x 6 = 126Nilai rata-rata 20 orang = 20 x 6,2 = 124Nilai anak yang terendah = 126 – 124 = 2Jawaban C 6. Simpangan baku dari data 7, 7, 6 , 11, 7, 5, 6, 7 adalah...a. ½ √11b. ½ √13c. ½ √15d. ½ √17e. ½ √19PembahasanRumus untuk mencari simpangan baku adalahDenganS = simpangan bakuxi = datax ̅ = rata-rata datan= banyak dataSebelumnya kita cari dulu rata-ratanyaSimpangan bakunya S = Jawaban A 7. Diagram lingkaran di bawah ini menunjukkan hobi dari siswa kelas XII IPS SMA. Jika diketahui 60 siswa hobi menonton. Banyak siswa yang hobinya membaca adalah ... a. 60 siswab. 120 siswac. 180 siswad. 200 siswae. 220 siswaPembahasanSiswa yang hobi membaca = 3600 – 700 + 1100 + 300 + 900 = 600Banyak siswa yang hobi membaca = 60/30 x 60 = 120 siswaJawaban B 8. Nilai rata-rata dari tabel di bawah ini adalah ...a. 61b. 62c. 63d. 64e. 65PembahasanRumus rata-rata dengan data kelompok adalahMakaSehingga rata-ratanyax ̅ = 2600/40x ̅ = 65Jawaban E 9. Rata-rata sekelompok bilangan adalah 40. Ada bilangan yang sebenarnya 60, tetapi terbaca 30. Setelah dihitung kembali ternyata rata-rata yang benar adalah 41. Banyak bilangan dalam kelompok itu adalah ...a. 20b. 25c. 30d. 42e. 45PembahasanBanyak bilangan = nJumlah total bilangan = 40 x n = 40nSelisih kesalahan baca = 60 – 30 = 30Jumlah nilai yang sebenarnya = 40n + 30Rata-rata yang sebenarnya = 40n+30/n41 = 40n+30/n41n = 40n + 30n = 30jadi, banyaknya bilangan ada C 10. Banyak siswa kelas A adalah 30. Kelas B adalah 20 siswa. Nilai rata-rata ujian matematika kelas A lebih 10 dari kelas B. Jika rata-rata nilai ujian matematika gabungan dari kelas A dan kelas B adalah 66, maka rata-rata nilai ujian matematika kelas B adalah ...a. 58b. 60c. 62d. 64e. 66PembahasanBanyak siswa kelas A = nA = 30Banyak siswa kelas B = nB = 20Rata-rata kelas A = xA = 10 + xBRata-rata kelas B = xBXgab = 66 3300 = 30xB + 300 + 20xB 3000 = 50xB xB = 60 Jadi, rata-rata kelas B adalah 60Jawaban B 11. Umur rata-rata dari suatu kelompok yang terdiri dari guru dan dosen adalah 42 tahun. Jika umur rata-rata para guru 39 tahun dan umur rata-rata para dosen 47 tahun, maka perbandingan banyaknya guru dan banyaknya dosen adalah ...a. 5 3b. 5 4c. 3 4d. 3 5e. 3 7PembahasanBanyak guru = xBanyak dosen = yJumlah umur guru = 39xJumlah umur dosen = 47xRata-rata gabungan = 42Jumlah umur gabungan = 42 x + yMakaJumlah umur guru + dosen = jumlah umur gabungan39x + 47x = 42x + y39x + 47x = 42x + 42y5y = 3xx/y = 5/3jadi, perbandingan guru dosen = 5 3Jawaban A 12. Dua kelompok anak masing-masing terdiri dari 4 anak, mempunyai rata-rata berat badan 30 kg dan 33 kg. Kalau seorang anak dari masing-masing kelompok ditukarkan maka ternyata rata-rata berat badan menjadi sama sama. Selisih berat badan yang ditukarkan adalah ...a. 1 1/2b. 2c. 4d. 6e. 8PembahasanJumlah anak kelompok 1 = xJumlah anak kelompok 2 = yn1 = n2 = 4Rata-rata kelompok 1 = x1 = 30Jumlah berat badan kelompok 1 = 30 x 4 = 120Rata-rata kelompok 2 = x2 = 33Jumlah berat badan kelompok 2 = 33 x 4 = 132Rata-rata setelah ada pertukaran = 120 – x + y = 120 – y + x 2y – 2x = 132 – 120 2y – 2x = 12 y – x = 6 Jadi, selisih berat badan yang ditukar adalah 6 D 13. Sumbangan rata-rata dari 25 keluarga adalah Jika besar sumbangan seorang warga bernama Noyo’ digabungkan dengan kelompok tersebut maka sumbangan rata-rata dari 26 keluarga sekarang menjadi ini berarti bahwa sumbangan Noyo’ sebesar ...a. sumbangan 25 keluarga = 25 x = sumbangan 26 keluarga = 26 x = sumbangan Noyo = - = D 14. Dalam suatu ujian, perbandingan jumlah siswa pria dan wanita adalah 6 5. Diketahui 3 peserta pria dan 1 peserta wanita tidak lulus. Jika perbandingan jumlah peserta pria dan wanita yang lulus ujian adalah 9 8 maka jumlah peserta yang lulus adalah ...a. 26b. 30c. 51d. 54e. 55PembahasanBanyak peserta pria = xBanyak peserta wanita = yPria wanita = 6 5x/y = 6/55x = 6yy = 5x/6 .... i3 pria dan 1 wanita tidak lulus, maka yang lulus = Pria = x – 3Wanita = y – 1Pria lulus wanita lulus = 9 88x – 24 = 9y – 98x – 9y = 15 ... iiSubtitusikan i dalam ii8x – 9y = 158x – = 158x – 15x/2 = 15 kali 216x – 15x = 30x = 30y = 5x/6 = = 25Jadi, banyak peserta yang lulus adalah = x – 3 + y – 1 = 30 – 3 + 25 – 1 = 27 + 24 = 51Jawaban C 15. Dari nilai ulangan 12 siswa, diketahui nilai terkecil 20 dan nilai terbesar 80, nilai rata-rata ulangan siswa tersebut tidak mungkin sama dengan ...a. 22b. 25c. 36d. 38e. 32Pembahasan- Jika 11 orang mendapat nilai 20 dan 1 orang mendapat nilai 80, maka rata-ratanya 11x20+1x80/12=220+80/12=300/12=25 - Jika 1 siswa mendapat nilai 20 dan 11 siswa mendapar nilai 80, maka rata-ratanya 1x20+11x80/12=20+880/12=900/12=75 Sehingga batas rata-ratanya adalah 25 ≤ x ≤ 75Maka, rata-rata yang tidak mungkin adalah 22Jawaban A 16. Suatu data dengan rata-rata 16 dan jangkauan 6. Jika setiap nilai dalam data dikalikan p kemudian dikurangi q didapat data baru dengan rata-rata 20 dan jangkauan 9. Nilai dari 2p + q = ...a. 3b. 4c. 7d. 8e. 9PembahasanMisal datanya x1, x2, x3, ..., xnRata-ratanya = Jangkauan = xn – x1 = 6Jika setiap data dikali p lalu dikurangi qRata-ratanya = = 16p – q = 20 ... iJangkauan = - q – - q = 9 = xn – x1p = 9 = 6p = 9 = p = 9/6 ...iiSubtitusikan ii dalam i – q = 2024 – q = 20q = 4jadi, nilai 2p + q = + 4 = 3 + 4 = 7Jawaban C 17. Diagram berikut menunjukkan persentase kelulusan siswa tiga sekolah selama empat berikut yang benar berdasarkan diagram di atas adalah ...a. Rata-rata persentase kelulusan sekolah golongan C terbaikb. Persentase kelulusan sekolah C selalu berada diposisi keduac. Persentase kelulusan sekolah C selalu lebih baik dari sekolah Ad. Persentase kelulusan sekolah B selalu lebih baik dari sekolah Ce. Persentase kelulusan sekolah C selalu lebih baik dari pada tahun mari kita cari rata-rata masing-masing sekolah- Rata-rata sekolah A = 57 + 65 + 83 + 77 4 = 70,5- Rata-rata sekolah B = 90 + 90 + 95 + 95 4 = 92,5- Rata-rata sekolah C = 69 + 78 + 79 + 100 4 = 81,6Selanjutnya kita bahas masing-masing opsiOpsi A salah, karena rata-rata terbaik adalah sekolah BOpsi B salah, karena pada tahun ke-4 persentase sekolah C adalah yang pertamaOpsi C salahOpsi D salah, karena pada tahun ke-4 B di bawah COpsi E benarJawaban E 18. Dari 3 bilangan yang terkecil adalah 19 dan yang terbesar 75. Rata-rata hitung ketiga bilangan tersebut tidak mungkin sama dengan ...a. 49b. 52c. 53d. 56e. 59PembahasanBilangan yang dimaksud 19, a, 75- Rata-rata terkecil misalkan ketika a = 19 19 + 19 + 75 3 = 37,67- Rata-rata terbesar misalkan ketika a = 75 19 + 75 + 75 3 = 56,33Jadi batas nilai rata-ratanya adalah 37,67 ≤ x ≤ 56,33Maka, rata-ratanya tidak mungkin 59Jawaban E 19. Nilai rata-rata ulangan matematika dari kedua kelas adalah 5,38. Jika nilai rata-rata kelas pertama yang terdiri dari 38 siswa adalah 5,8 dan kelas kedua terdiri dari 42 siswa maka nilai rata-rata kelas kedua adalah ...a. 5b. 5,12c. 5,18d. 5,21e. 5,26PembahasanRata-rata gabungan = xgab = 5,38Rata-rata kelas pertama = xA = 5,8Jumlah siswa A = nA = 38Jumlah siswa B = nB = 42Rata-rata gabungan dicari dengan rumus 5,38 . 80 = 220,4 + 42xB 430,4 = 220,4 + 42xB 430,4 - 220,4 = 42xB 210 = 42xB xB = 210/42 xB = 5Jadi, rata-rata kelas kedua adalah 5Jawaban A 20. Nilai rata-rata ulangan matematika dari 40 siswa SMA adalah 70. Jika seorang siswa yang nilainya 100 dan 3 orang siswa yang nilainya masing-masing 30 tidak dimasukkan dalam perhitungan maka nilai rata-ratanya menjadi ... a. 70,5b. 72,5c. 74,5d. 75,5e. 76,5PembahasanTotal nilai seluruh siswa = 40 x 70 = nilai 36 siswa yang baru = – 100 + = – 190 = rata-rata yang baru adalah = = 72,5Jawaban B 21. Tahun yang lalu gaji perbulan 5 orang karyawan dalam ribuan rupiah sebagai berikut 480, 360, 650, 700, 260. Tahun ini gaji mereka naik 15% bagi yang sebelumnya bergaji kurang dari dan 10% bagi yang sebelumnya bergaji lebih dari Rata-rata besarnya kenaikan gaji mereka per bulan adalah ...a. gaji 15% untuk yang berpenghasilan x 10/100 = x 10/100 = besarnya kenaikan gaji adalah Jawaban A 22. Suatu data mempunyai rata-rata 35 dan jangkauan 7. Jika setiap nilai dalam data dikali p kemudian dikurangi q didapat data baru dengan rata-rata 42 dan jangkauan 9. Nilai 7p – q = ...a. 3b. 4c. 5d. 6e. 7PembahasanMisal datanya x1, x2, x3, ..., xnRata-ratanya Jangkauan = xn – x1 = 7Jika setiap data dikali p lalu dikurangi qRata-ratanya = = 35p – q = 42 ... iJangkauan = - q – - q = 9 = xn – x1p = 9 = 7p = 9 = p = 9/7 ...iiSubtitusikan ii dalam i – q = 4245 – q = 42q = 3jadi, nilai 7p - q = - 3 = 9 - 3 = 6Jawaban D 23. Diketahui data-data x1, x2, x3, ...., x10. Jika setiap nilai ditambah 10, maka...1 Rata-rata akan bertambah 102 Jangkauan bertambah 103 Median bertambah 104 Simpangan kuartil bertambah 10Pembahasan- Rata-rata - Jangkauan R = x10 – x1- Median - Simpangan Kuartil Qd = ½ Q3 – Q1 = ½ x8 – x3Jumlah nilai tiap data ditambah 10, maka- Rata-rata - Jangkauan R = x10 + 10 – x1 + 10 = x10 – x1- Median - Simpangan Kuartil Qd = ½ Q3 – Q1 = ½ x8+10 – x3+10 = ½ x8 – x3 = QdMari kita bahas satu persatu opsinyaOpsi 1 benar, rata-ratanya bertambah 10Opsi 2 salah, jangkauannya tetapOpsi 3 benar, mediannya bertambah 10Opsi 2 salah, simpangan kuartilnya tetapJadi, pilihan 1 dan 3 yang benar 24. Sekumpulan data mempunyai rata-rata 12 dan jangkauan 6. Jika setiap data dikurangi dengan a kemudian hasilnya dibagi dengan b ternyata menghasilkan data baru dengan rata-rata 2 dan jangkauan 3, maka nilai a dan b adalah ...a. 8 dan 2b. 10 dan 2c. 4 dan 4d. 6 dan 4e. 8 dan 4PembahasanMisal datanya x1, x2, x3, ..., xnRata-ratanya Jangkauan = xn – x1 = 6Jika setiap data dikurangi a lalu dibagi b Subtitusikan ii dalam i12-a/b = 2 12-a/2 = 212-a=4a = 8 jadi, nilai a dan b adalah 8 dan 2Jawaban A 25. Data berikut adalah data tinggi badan sekelompok siswaJika median data di atas adalah 163,5 cm maka nilai k adalah ...a. 20b. 22c. 40d. 46e. 48PembahasanPerlu diketahui, bahwa rumus untuk mencari median Me adalahDenganMe = mediantb = tepi bawah kelas yang memuat mediann = banyak dataf = frekuensi kumulatif sebelum kelas medianf = frekuensi kelas medianc = panjang kelasPerhatikan tabel frekuensi kumulatif berikut ini data berdasakan soal di atasMaka, mediannya 6k = 40 + 5k k = 40Jawaban C
3 Aplikasi ini hanya dibuat untuk proses absensi siswa pada SMK Mahardhika Surabaya. 4. Hak akses atau pengguna aplikasi ini hanya untuk guru, siswa, orangtua, dan admin yang dikelola oleh bagian kurikulum. 1.4 Tujuan Tujuan yang ingin dicapai penulis dari pembuatan aplikasi pencatatan absensi siswa pada SMK Mahardhika Surabaya yaitu:
PertanyaanDalam suatu kelas terdapat 36 orang siswa, 20 orang diantaranya siswa wanita. Perbandingan banyak siswa pria dan siswa wanita adalah ....Dalam suatu kelas terdapat orang siswa, orang diantaranya siswa wanita. Perbandingan banyak siswa pria dan siswa wanita adalah ....WLMahasiswa/Alumni Universitas SriwijayaJawabanperbandinganbanyak siswa pria dan siswa wanita adalah .perbandingan banyak siswa pria dan siswa wanita adalah .PembahasanDalam suatu kelas terdapat orang siswa, orang diantaranya siswa wanita. Maka Perbandingan banyak siswa pria dan siswa wanita dapat ditentukan sebagai berikut Jadi, perbandinganbanyak siswa pria dan siswa wanita adalah .Dalam suatu kelas terdapat orang siswa, orang diantaranya siswa wanita. Maka Perbandingan banyak siswa pria dan siswa wanita dapat ditentukan sebagai berikut Jadi, perbandingan banyak siswa pria dan siswa wanita adalah . Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!885Yuk, beri rating untuk berterima kasih pada penjawab soal!
padasiklus I, tingkat pemahaman dan minat belajar siswa mencapai 76,9% dan pada siklus II, mendapatkan hasil 76,36%.9 Kedua, Siti Nur Kholidah, mahasiswa IAIN Walisongo Semarang (073100152) dalam penelitiannya yang berjudul “Pengaruh Bimbingan Orang Tua Terhadap Prestasi Belajar PAI Siswa Kelas VI
Sebelum Anda mencoba untuk memahami beberapa contoh soal di bawah ini. Sebaiknya Anda mempelajari cara menyajikan data ke dalam bentuk diagram Venn, karena konsep tersebut merupakan konsep dasar untuk memahami beberapa soal dibawah ini. Contoh Soal 1 Di antara 100 siswa, 32 orang suka PKn, 20 orang suka IPS, 45 orang suka IPA, 15 orang suka PKn dan IPA, 7 orang suka PKn dan IPS, 10 orang suka IPS dan IPA, 30 orang tidak suka satu pun di antara ketiga mata pelajaran tersebut. a Hitung banyaknya siswa yang suka ketiga mata pelajaran tersebut; b Hitung banyaknya siswa yang hanya suka satu dari ketiga matsa pelajaran tersebut; dan c Gambarkan dengan Diagram Venn ! Penyelesaian Misalkan yang mengikuti ketiga mata pelajaran tersebut adalah x maka yang suka PKn dan IPA saja = 15-x IPA dan IPS saja = 10-x PKn dan IPS saja = 7-x PKn saja = 32 –15-x-7-x-x = 10+x IPA saja = 45 –15-x-10-x-x = 20+x IPS saja = 20 –10-x-7-x-x = 3+x maka diagram vennya menjadi a Unuk mencari jumlah siswa yang suka ketiga mata pelajaran tersebut, dengan mencari nilai x, caranya sebagai berikut 100 – 30 = 3+x+20+x+10+x+7-x +10-x+15-x + x 70 = 65 + x x = 5 Jadi jumlah siswa yang suka ketiga mata pelajaran tersebut adalah 5 orang. b Unuk mencari jumlah siswa yang hanya suka satu dari ketiga mata pelajaran tersebut, caranya sebagai berikut PKn saja = 10+x = 10 + 5 = 15 IPA saja = 20+x = 20 + 5 = 25 IPS saja = 3+x = 3 + 5 = 8 Jumlah semua siswa yang hanya suka satu dari ketiga mata pelajaran = 15 + 25 + 8 = 48 Jadi, jumlah siswa yang hanya suka satu dari ketiga mata pelajaran tersebut adalah 48 orang. c Dengan memasukan nilai x maka diperoleh gambar Diagram Vennnya seperti gambar dibawah ini Contoh Soal 2 Di antara sekelompok siswa 100 orang, ternyata 41 orang suka matematika, 52 orang fisika, 37 orang suka kimia, 16 orang suka matematika dan fisika, 15 orang suka matematika dan kimia, 14 orang suka fisika dan kimia, dan 5 orang tidak suka ketiga pelajaran tersebut. a Gambarlah diagram Venn untuk menunjukkan keadaan di atas. b berapa siswa yang suka ketiganya? c berapa siswa yang suka matematika atau fisika? d berapa siswa yang suka hanya satu dari ketiga mata pelajaran tersebut. Penyelesaian Misalkan yang suka ketiga mata pelajaran tersebut adalah x maka yang suka matematika dan fisika saja = 16-x matematika dan kimia saja = 15-x fisika dan kimia saja = 14-x matematika saja = 41 –16-x-15-x-x = 10+x fisika saja = 52 –16-x-14-x-x = 22+x kimia saja = 37 –15-x-14-x-x = 8+x jika unsur-unsur tersebut disajikan ke dalam bentuk diagram venn maka diagram vennya menjadi Unuk mencari nilai x caranya sebagai berikut 100 – 5 = 10+x+22+x+8+x+16-x +14-x+15-x + x 95 = 85 + x x = 10 a Untuk menggambarkan ke dalam diagram venn, masukan nilai x, maka matematika dan fisika saja = 16-x = 16-10 = 6 matematika dan kimia saja = 15-x =15 – 10 = 5 fisika dan kimia saja = 14-x = 14-10 = 4 matematika saja = 10+x = 10 + 10 = 20 fisika saja = 22+x = 22 + 10 = 32 kimia saja = 8+x = 8 + 10 = 18 dengan memasukan semua unsur-unsur tersebut ke dalam diagram venn, maka gambarnya seperti gambar di bawah ini. b siswa yang suka ketiganya ada 10 orang c siswa yang suka matematika atau fisika merupakan gabungan antara himpunan matematika dan fisika ada 77 orang d siswa yang suka hanya satu dari ketiga mata pelajaran tersebut ada 70 orang Demikian postingan Mafia Online tentang contoh soal dan cara menjawab himpunan atau diagram venn. Jika ada masalah terkait pembahaasan di atas silahkan ditanyakan di kolom komentar. Mohon maaf jika ada kesalahan dalam perhitungan, penyajian maupun kata-kata dalam postingan ini. Artikel menarik lainnya silahkan baca cara cepat menjawab soal himpunan.
5gB5i. b028z8jm1k.pages.dev/47b028z8jm1k.pages.dev/181b028z8jm1k.pages.dev/69b028z8jm1k.pages.dev/146b028z8jm1k.pages.dev/411b028z8jm1k.pages.dev/185b028z8jm1k.pages.dev/335b028z8jm1k.pages.dev/317
dalam suatu kelas terdapat 36 orang siswa